Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan 30;273(5):2792-8.
doi: 10.1074/jbc.273.5.2792.

Both cellular and soluble forms of thrombomodulin inhibit fibrinolysis by potentiating the activation of thrombin-activable fibrinolysis inhibitor

Affiliations
Free article

Both cellular and soluble forms of thrombomodulin inhibit fibrinolysis by potentiating the activation of thrombin-activable fibrinolysis inhibitor

L Bajzar et al. J Biol Chem. .
Free article

Abstract

Thrombin-activable fibrinolysis inhibitor (TAFI) is a recently described plasma zymogen that can be activated by thrombin to an enzyme with carboxypeptidase B-like activity. The enzyme, TAFIa, potently attentuates fibrinolysis. TAFI activation, like protein C activation, is augmented about 1250-fold by thrombomodulin (TM). In this work, the effects of both soluble and cellular forms of TM on TAFI activation-dependent suppression of fibrinolysis were investigated. Soluble TM included in clots formed from purified components, barium citrate-adsorbed plasma, or normal human plasma maximally increased the tissue plasminogen activator-induced lysis time 2-3-fold, with saturation occurring at 5, 10, and 1 nM TM in the three respective systems. Soluble TM did not effect lysis in the system of purified components lacking TAFI or in plasmas immunodepleted of TAFI. In addition, the antifibrinolytic effect of TM was negated by monoclonal antibodies against either TAFI or TM. The inhibition of fibrinolysis by cellular TM was assessed by forming clots in dialyzed, barium citrate-adsorbed, or normal plasma over cultured human umbilical vein endothelial cells (HUVECs). Tissue plasminogen activator-induced lysis time was increased 2-fold, with both plasmas, in the presence of HUVECs. The antifibrinolytic effect of HUVECs was abolished 66% by specific anti-TAFI or anti-TM monoclonal antibodies. A newly developed functional assay demonstrated that HUVECs potentiate the thrombin-catalyzed, TM-dependent formation of activated TAFI. Thus, endothelial cell TM, in vitro at least, appears to participate in the regulation of not only coagulation but also fibrinolysis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources