Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan 30;273(5):2977-83.
doi: 10.1074/jbc.273.5.2977.

Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high osmolarity glycerol mitogen-activated protein kinase pathway in osmotic stress response

Affiliations
Free article

Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high osmolarity glycerol mitogen-activated protein kinase pathway in osmotic stress response

Y Inoue et al. J Biol Chem. .
Free article

Abstract

Methylglyoxal is a cytotoxic metabolite derived from dihydroxyacetone phosphate, an intermediate of glycolysis. Detoxification of methylglyoxal is performed by glyoxalase I. Expression of the structural gene of glyoxalase I (GLO1) of Saccharomyces cerevisiae under several stress conditions was investigated using the GLO1-lacZ fusion gene, and expression of the GLO1 gene was found to be specifically induced by osmotic stress. The Hog1p is one of the mitogen-activated protein kinases (MAPKs) in S. cerevisiae, and both Msn2p and Msn4p are the transcriptional regulators that are thought to be under the control of Hog1p-MAPK. Expression of the GLO1 gene under osmotic stress was completely repressed in hog1Delta disruptant and was repressed approximately 80 and 50% in msn2Delta and msn4Delta disruptants, respectively. A double mutant of the MSN2 and MSN4 gene was unable to induce expression of the GLO1 gene under highly osmotic conditions. Glucose consumption increased approximately 30% during the adaptive period in osmotic stress in the wild type strain. On the contrary, it was reduced by 15% in the hog1Delta mutant. When the yeast cell is exposed to highly osmotic conditions, glycerol is synthesized as a compatible solute. Glycerol is synthesized from glucose, and a rate-limiting enzyme in glycerol biosynthesis is glycerol-3-phosphate dehydrogenase (GPD1 gene product), which catalyzes reduction of dihydroxyacetone phosphate to glycerol 3-phosphate. Expression of the GPD1 gene is also under the control of Hog1p-MAPK. Methylglyoxal is also synthesized from dihydroxyacetone phosphate; therefore, induction of the GLO1 gene expression by osmotic stress was thought to scavenge methylglyoxal, which increased during glycerol production for adaptation to osmotic stress.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources