Hypocalcemia modifies the intracellular calcium response to the alpha 1-adrenergic agent phenylephrine in rat hepatocytes
- PMID: 9448941
- DOI: 10.1016/s0143-4160(97)90019-1
Hypocalcemia modifies the intracellular calcium response to the alpha 1-adrenergic agent phenylephrine in rat hepatocytes
Abstract
In vivo, extracellular calcium ([Ca2+]e) homeostasis is maintained within a very narrow range by the calcium regulating hormones. At the cellular level, the response to many agents is transduced by changes in cytosolic Ca2+ ([Ca2+]i) which involves both mobilization of cellular pools and entry of [Ca2+]e through plasma membrane channels. To investigate the cellular effects of chronic hypocalcemia (Ca-) on [Ca2+]i homeostasis, hepatocytes, a cell type well characterized for its [Ca2+]i response, were used. Data indicate that Ca- leads to a significant shift to the left in the basal resting cytosolic Ca2+ concentration distribution curve with half-maximum cumulative frequency of 119 versus 149 nM in Ca- and normal rats (N) respectively (P < 0.0001). The response to the alpha 1-adrenergic agonist phenylephrine (Phe) was also influenced by Ca- with a dampening of the dose-response curve, a significant decrease in the frequency of sustained responses (P < 0.001), and significant changes in the oscillation pattern. Indeed, hepatocytes obtained from Ca- exhibited a higher frequency of large amplitude, low frequency oscillations than N most particularly at the 2 and 5 microM Phe dose while N predominantly exhibited low amplitude, high frequency oscillations on sustained plateaus (P < 0.001). IP3 receptor (IP3R) binding studies and Ca2+ mobilization from IP3-sensitive pools showed that IP3R was highly sensitive to the prevailing Ca2+ with, in the range of resting [Ca2+]i, R affinity significantly lower in Ca- than in N. Upon exposure of permeabilized cells to 25 microM IP3, Ca2+ mobilization from the IP3-sensitive intracellular pool was significantly reduced by Ca- (P < 0.05) suggesting a decrease in the IP3-mobilizable Ca2+ pool in Ca-. Our results indicate that hypocalcemia significantly alters [Ca2+]i signalling by perturbing the initial response to agonist and the [Ca2+]i response pattern. In addition, the decrease in Ca2+ mobilization from IP3-sensitive pools suggests that hypocalcemia may also lead to a decrease in the Ca2+ content of intracellular pools.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
