Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Nov;22(5):367-72.
doi: 10.1016/s0143-4160(97)90021-x.

Axotomy induces transient calbindin D28K immunoreactivity in hypoglossal motoneurons in vivo

Affiliations

Axotomy induces transient calbindin D28K immunoreactivity in hypoglossal motoneurons in vivo

C Krebs et al. Cell Calcium. 1997 Nov.

Abstract

Calbindin D28K, an intracellular calcium-binding protein, acts as Ca2+ buffering system in the cytoplasm. By means of this property, calbindin may protect neurons against large fluctuations in free intracellular Ca2+ and, hence, may prevent cell death. Although axotomy causes a massive influx of calcium into the lesioned neurons, resection of the hypoglossal nerve does not induce extensive neuronal cell death in rats. Even several weeks after axotomy, about 70% of the motoneurons survive despite permanent target deprivation. The mechanisms responsible for this remarkable survival rate are unknown. In this study, we have looked at the modification of calbindin immunoreactivity in axotomized hypoglossal motoneurons. In non-axotomized motoneurons, no calbindin is detectable by immunocytochemistry. Axotomy induced an increase of calbindin immunoreactivity in lesioned motoneurons. This increase, visualised by the number of calbindin-immunoreactive neurons extended from 1 day to 28 days. At this time most, but not all, motoneurons located on the side of the lesion were calbindin-positive as shown by retrograde labeling and immunoquenching. From 14 days post operation, calbindin immunoreactivity decreased and reached its basal value after 35 days post operation. At that time, only fibres were still calbindin immunoreactive. Interestingly, calbindin-immunoreactivity was also increased in almost all cell nuclei, compatible with a nuclear regulation. These data are consistent with the hypothesis that, as a reaction to axotomy, motoneurons trigger an increase in calbindin expression which acts as a compensatory Ca(2+)-buffering system, enabling neurons to maintain Ca2+ homeostasis and the survival of many motoneurons after axotomy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources