Capillary gas chromatography with chemical ionization negative ion mass spectrometry in the identification of odorous steroids formed in metabolic studies of the sulphates of androsterone, DHA and 5alpha-androst-16-en-3beta-ol with human axillary bacterial isolates
- PMID: 9449209
- DOI: 10.1016/s0960-0760(97)00075-7
Capillary gas chromatography with chemical ionization negative ion mass spectrometry in the identification of odorous steroids formed in metabolic studies of the sulphates of androsterone, DHA and 5alpha-androst-16-en-3beta-ol with human axillary bacterial isolates
Abstract
The products of metabolism of the sulphates (0.5 micromol/l) of androsterone, dehydroepiandrosterone (DHA) and 5alpha-androst-16-en-3beta-ol have been investigated after incubation with 72 h cultures of human axillary bacterial isolates for 3 days at 37 degrees C. The medium used, tryptone soya broth (TSB), contained yeast extract and Tween 80. The isolates used were Coryneform F1 (known previously to metabolize testosterone and to be involved in under-arm odour (UAO) production, i.e. UAO +ve), Coryneform F46 (inactive in both the testosterone metabolism and UAO tests, i.e. UAO -ve) and Staphylococcus hominis/epidermidis (IIR3). Control incubations of TSB alone, TSB plus each of the steroid sulphates and TSB plus each of the bacterial isolates were also set up. After termination of reactions and addition of internal standards, 5alpha-androstan-3beta-ol and 5alpha-androstan-3-one (50 ng each), extracted and purified metabolites were subjected to combined gas chromatography-mass spectrometry with specific ion monitoring. Steroidal ketones were derivatized as their O-pentafluorobenzyl oximes; steroidal alcohols (only androst-16-enols in this study) were derivatized as their tert-butyldimethylsilyl ethers. Analysis was achieved by negative ion chemical ionization mass spectrometry for the pentafluorobenzyl oximes at [M-20]- and electron impact positive ion mass spectrometry for the tert-butyldimethylsilyl ethers at [M-57]+. The incubation broth contained two compounds which had gas chromatographic and mass spectrometric properties identical to those of DHA and 4-androstenedione. It was not possible, therefore, to show unequivocally that DHA sulphate (DHAS) was converted microbially into DHA, although this is implied by the finding of small quantities of testosterone and 5alpha-dihydrotestosterone in incubations with F1. With androsterone S, no free androsterone was recorded and only very small (5 pg or less) amounts of testosterone. Two odorous steroids, androsta-4,16-dien-3-one and 5alpha-androst-2-en-17-one (Steroid I) were formed (mean quantities 40 and 45 pg, respectively). The sulphate of 5alpha-androst-16-en-3beta-ol was metabolized with F1 into large quantities of the odorous steroids, 5alpha-androst-16-en-3-one and Steroid I. In addition, much smaller quantities of androsta-4,16-dien-3-one were formed. In contrast, incubations of DHAS with F46 resulted in no metabolites except, possibly, DHA, but the sulphate moiety of androsterone S was also cleaved to yield the free steroid together with large amounts of Steroid I. In incubations of DHAS and androsterone S with F1, no 16-unsaturated steroids were formed, although 5alpha-androst-16-en-3beta-yl S was de-sulphated and the free steroid further metabolized. No evidence was obtained for androst-16-ene metabolism in incubations with F46. In incubations with S. hominis/epidermidis (IIR3), androsterone S was converted into androsterone and, in high yield, to Steroid I plus some 5alpha-androst-16-en-3-one. Both DHAS and androsterone S were converted into androst-16-enols. Sulphatase activity was also manifested when 5alpha-androst-16-en-3beta-yl S was utilized as substrate with IIR3, large quantities of Steroid I and 5alpha-androst-16-en-3-one being formed, together with further metabolism of androst-16-enes. In view of the fact that both DHAS and androsterone S occur in apocrine sweat, the metabolism of these endogenous substrates by human axillary bacteria to several odorous steroids may have important implications in the context of human odour formation.
Similar articles
-
Applications of gas chromatography-mass spectrometry in the study of androgen and odorous 16-androstene metabolism by human axillary bacteria.J Chromatogr. 1991 Jan 2;562(1-2):647-58. doi: 10.1016/0378-4347(91)80615-j. J Chromatogr. 1991. PMID: 2026727
-
Use of gas chromatographic-mass spectrometric techniques in studies of androst-16-ene and androgen biosynthesis in human testis; cytosolic specific binding of 5alpha-androst-16-en-3-one.J Steroid Biochem Mol Biol. 1997 Jan;60(1-2):137-46. doi: 10.1016/s0960-0760(96)00162-8. J Steroid Biochem Mol Biol. 1997. PMID: 9182868
-
Seized designer supplement named "1-Androsterone": identification as 3β-hydroxy-5α-androst-1-en-17-one and its urinary elimination.Steroids. 2011 May;76(6):540-7. doi: 10.1016/j.steroids.2011.02.001. Epub 2011 Feb 16. Steroids. 2011. PMID: 21310167
-
Pathways and genes involved in steroid hormone metabolism in male pigs: a review and update.J Steroid Biochem Mol Biol. 2014 Mar;140:44-55. doi: 10.1016/j.jsbmb.2013.11.001. Epub 2013 Nov 12. J Steroid Biochem Mol Biol. 2014. PMID: 24239507 Review.
-
Androgen glucuronides analysis by liquid chromatography tandem-mass spectrometry: could it raise new perspectives in the diagnostic field of hormone-dependent malignancies?J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Dec 1;940:24-34. doi: 10.1016/j.jchromb.2013.09.022. Epub 2013 Sep 27. J Chromatogr B Analyt Technol Biomed Life Sci. 2013. PMID: 24140653 Review.
Cited by
-
Biological and Chemical Processes that Lead to Textile Malodour Development.Microorganisms. 2020 Oct 31;8(11):1709. doi: 10.3390/microorganisms8111709. Microorganisms. 2020. PMID: 33142874 Free PMC article. Review.
-
Glutathione-conjugated sulfanylalkanols are substrates for ABCC11 and γ-glutamyl transferase 1: a potential new pathway for the formation of odorant precursors in the apocrine sweat gland.Exp Dermatol. 2014 Apr;23(4):247-52. doi: 10.1111/exd.12354. Exp Dermatol. 2014. PMID: 24533866 Free PMC article.
-
Chemosensory cues to conspecific emotional stress activate amygdala in humans.PLoS One. 2009 Jul 29;4(7):e6415. doi: 10.1371/journal.pone.0006415. PLoS One. 2009. PMID: 19641623 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Research Materials