Energetics of quasiequivalence: computational analysis of protein-protein interactions in icosahedral viruses
- PMID: 9449355
- PMCID: PMC1299407
- DOI: 10.1016/S0006-3495(98)77813-0
Energetics of quasiequivalence: computational analysis of protein-protein interactions in icosahedral viruses
Abstract
Quaternary structure polymorphism found in quasiequivalent virus capsids provides a static framework for studying the dynamics of protein interactions. The same protein subunits are found in different structural environments within these particles, and in some cases, the molecular switching required for the polymorphic quaternary interactions is obvious from high-resolution crystallographic studies. Employing atomic resolution structures, molecular mechanics, and continuum electrostatic methods, we have computed association energies for unique subunit interfaces of three icosahedral viruses, black beetle virus, southern bean virus, and human rhinovirus 14. To quantify the chemical determinants of quasiequivalence, the energetic contributions of individual residues forming quasiequivalent interfaces were calculated and compared. The potential significance of the differences in stabilities at quasiequivalent interfaces was then explored with the combinatorial assembly approach. The analysis shows that the unique association energies computed for each virus serve as a sensitive basis set that may determine distinct intermediates and pathways of virus capsid assembly. The pathways for the quasiequivalent viruses displayed isoenergetic oligomers at specific points, suggesting that these may determine the quaternary structure polymorphism required for the assembly of a quasiequivalent particle.
Similar articles
-
Functional implications of protein-protein interactions in icosahedral viruses.Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):27-33. doi: 10.1073/pnas.93.1.27. Proc Natl Acad Sci U S A. 1996. PMID: 8552620 Free PMC article. Review.
-
The role of arginine-rich motif and beta-annulus in the assembly and stability of Sesbania mosaic virus capsids.J Mol Biol. 2005 Oct 21;353(2):447-58. doi: 10.1016/j.jmb.2005.08.021. J Mol Biol. 2005. PMID: 16169007
-
Structure of sesbania mosaic virus at 3 A resolution.Structure. 1995 Oct 15;3(10):1021-30. doi: 10.1016/s0969-2126(01)00238-6. Structure. 1995. PMID: 8589997
-
T=1 capsid structures of Sesbania mosaic virus coat protein mutants: determinants of T=3 and T=1 capsid assembly.J Mol Biol. 2004 Sep 17;342(3):987-99. doi: 10.1016/j.jmb.2004.07.003. J Mol Biol. 2004. PMID: 15342251
-
Theoretical studies of viral capsid proteins.Curr Opin Struct Biol. 2000 Apr;10(2):170-3. doi: 10.1016/s0959-440x(00)00064-6. Curr Opin Struct Biol. 2000. PMID: 10753813 Review.
Cited by
-
Mechanics of DNA packaging in viruses.Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3173-8. doi: 10.1073/pnas.0737893100. Epub 2003 Mar 10. Proc Natl Acad Sci U S A. 2003. PMID: 12629206 Free PMC article.
-
Local rules simulation of the kinetics of virus capsid self-assembly.Biophys J. 1998 Dec;75(6):2626-36. doi: 10.1016/S0006-3495(98)77708-2. Biophys J. 1998. PMID: 9826587 Free PMC article.
-
Evolutionary trace residues in noroviruses: importance in receptor binding, antigenicity, virion assembly, and strain diversity.J Virol. 2005 Jan;79(1):554-68. doi: 10.1128/JVI.79.1.554-568.2005. J Virol. 2005. PMID: 15596848 Free PMC article.
-
A novel method to map and compare protein-protein interactions in spherical viral capsids.Proteins. 2008 Nov 15;73(3):644-55. doi: 10.1002/prot.22088. Proteins. 2008. PMID: 18491385 Free PMC article.
-
Self-assembly of brome mosaic virus capsids: insights from shorter time-scale experiments.J Phys Chem A. 2008 Oct 2;112(39):9405-12. doi: 10.1021/jp802498z. Epub 2008 Aug 28. J Phys Chem A. 2008. PMID: 18754598 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources