Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan 9;275(1):81-94.
doi: 10.1006/jmbi.1997.1436.

Transfer protein TraM stimulates TraI-catalyzed cleavage of the transfer origin of plasmid R1 in vivo

Affiliations

Transfer protein TraM stimulates TraI-catalyzed cleavage of the transfer origin of plasmid R1 in vivo

G Kupelwieser et al. J Mol Biol. .

Abstract

Factors contributing directly to the cleavage of the conjugative transfer origin of plasmid R1 in Escherichia coli were investigated. The essential transfer protein TraM was identified as a necessary positive effector of the catalytic activity of TraI relaxase at the R1 transfer origin in the absence of protein TraY. The stimulatory effect of TraM on the cleavage reaction in vivo correlated with the capacity of TraM to bind origin DNA. TraM was shown to be essential for heterologous mobilization of recombinant origin DNA. The requirement for TraM to promote mobilization was distinct from the protein's positive effect on transfer gene regulation. Chimeric traM alleles, fusing heterologous amino and carboxyl coding sequences from the traM genes of the R1 and the IncFI plasmid P307, were used to localize the specificity determinant of TraM's DNA binding activity. Use of the chimeric alleles also revealed that the requirement for TraM in mobilization is origin specific but transfer system independent. No evidence was found for a plasmid specific activity of TraM at a stage in the transfer process subsequent to the initial cleavage of origin DNA. In light of TraM's regulatory functions in transfer gene expression, we propose that TraM could control conjugative DNA processing in response to intracellular levels of transfer proteins.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources