Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1998 Jan;84(1):389-95.
doi: 10.1152/jappl.1998.84.1.389.

A comprehensive equation for the pulmonary pressure-volume curve

Affiliations
Free article
Clinical Trial

A comprehensive equation for the pulmonary pressure-volume curve

J G Venegas et al. J Appl Physiol (1985). 1998 Jan.
Free article

Abstract

Quantification of pulmonary pressure-volume (P-V) curves is often limited to calculation of specific compliance at a given pressure or the recoil pressure (P) at a given volume (V). These parameters can be substantially different depending on the arbitrary pressure or volume used in the comparison and may lead to erroneous conclusions. We evaluated a sigmoidal equation of the form, V = a + b[1 - e-(P-c)/d]-1, for its ability to characterize lung and respiratory system P-V curves obtained under a variety of conditions including normal and hypocapnic pneumoconstricted dog lungs (n = 9), oleic acid-induced acute respiratory distress syndrome (n = 2), and mechanically ventilated patients with acute respiratory distress syndrome (n = 10). In this equation, a corresponds to the V of a lower asymptote, b to the V difference between upper and lower asymptotes, c to the P at the true inflection point of the curve, and d to a width parameter proportional to the P range within which most of the V change occurs. The equation fitted equally well inflation and deflation limbs of P-V curves with a mean goodness-of-fit coefficient (R2) of 0.997 +/- 0.02 (SD). When the data from all analyzed P-V curves were normalized by the best-fit parameters and plotted as (V-a)/b vs. (P-c)/d, they collapsed into a single and tight relationship (R2 = 0.997). These results demonstrate that this sigmoidal equation can fit with excellent precision inflation and deflation P-V curves of normal lungs and of lungs with alveolar derecruitment and/or a region of gas trapping while yielding robust and physiologically useful parameters.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

LinkOut - more resources