Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan;31(1 Pt 2):362-7.
doi: 10.1161/01.hyp.31.1.362.

Metabolism of angiotensin-(1-7) by angiotensin-converting enzyme

Affiliations

Metabolism of angiotensin-(1-7) by angiotensin-converting enzyme

M C Chappell et al. Hypertension. 1998 Jan.

Abstract

Angiotensin converting enzyme (ACE) inhibitors augment circulating levels of the vasodilator peptide angiotensin-(1-7) [Ang-(1-7)] in man and animals. Increased concentrations of the peptide may contribute to the antihypertensive effects associated with ACE inhibitors. The rise in Ang-(1-7) following ACE inhibition may result from increased production of the peptide or inhibition of the metabolism of Ang-(1-7)-similar to that observed for bradykinin. To address the latter possibility, we determined whether Ang-(1-7) is a substrate for ACE in vitro. In a pulmonary membrane preparation, the ACE inhibitor lisinopril attenuated the metabolism of low concentrations of 125I-Ang-(1-7). The primary product of 125I-Ang-(1-7) metabolism was identified as Ang-(1-5). Using affinity-purified ACE from canine lung, HPLC separation and amino acid analysis revealed that ACE functioned as a dipeptidyl carboxypeptidase cleaving Ang-(1-7) to the pentapeptide Ang-(1-5). The ACE inhibitors lisinopril and enalaprilat (1 micromol/L), as well as the chelating agents EDTA, o-phenanthroline, and DTT (0.1-1 mmol/L) abolished the generation of Ang-(1-5) and did not yield other metabolic products. Ang-(1-5) was not further hydrolyzed by ACE. Kinetic analysis of the hydrolysis of Ang-(1-7) by ACE revealed a substrate affinity of 0.81 micromol/L and maximal velocity of 0.65 micromols min(-1) mg(-1). The calculated turnover constant for the peptide was 1.8 sec(-1) with a catalytic efficiency (Kcat/Km) of 2200 sec(-1) mmol/L(-1). These findings suggest that increased levels of Ang-(1-7) following ACE inhibition may be due, in part, to decreased metabolism of the peptide.

PubMed Disclaimer

Publication types

LinkOut - more resources