Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan;149(1):1-12.
doi: 10.1006/exnr.1997.6599.

Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons

Affiliations
Free article

Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons

T I Peng et al. Exp Neurol. 1998 Jan.
Free article

Abstract

Ca2+ influx through NMDA receptor-gated channels and the subsequent rise in intracellular Ca2+ concentration ([Ca2+]i) have been implicated in cytotoxic processes that lead to irreversible neuronal injury. While many studies have focused on cytosolic Ca2+ homeostasis, much less is known about Ca2+ fluxes in subcellular organelles, such as mitochondria. The mitochondria play an important role in Ca2+ homeostasis by sequestering cytosolic Ca2+ loads. However, mitochondrial Ca2+ overload can impair ATP synthesis, induce free radical formation, and lead to lipid peroxidation. Thus, it is also important to understand the mitochondrial Ca2+ fluxes induced by NMDA. In this study, changes in mitochondrial Ca2+ concentration ([Ca2+]m) in cultured striatal neurons were monitored with a Ca(2+)-binding fluorescent probe, rhod-2, and laser scanning confocal microscopy. The rhod-2 fluorescence signal was highly localized in mitochondrial areas of confocal images. A rapid increase of [Ca2+]m was observed when neurons were treated with 100 microM NMDA. The increased [Ca2+]m induced by NMDA could not be observed in the presence of ruthenium red, an inhibitor of the mitochondrial Ca2+ uniporter, or CCCP, a protonophore that breaks down the mitochondrial membrane potential necessary for Ca2+ uptake. The magnitude and reversibility of changes in [Ca2+]m induced by NMDA were variable. In neurons receiving multiple pulses of NMDA, [Ca2+]m did not return to baseline. The elevated [Ca2+]m may persist indefinitely and may rise further after successive NMDA exposures. These data demonstrate that Ca2+ accumulates in mitochondria in response to NMDA receptor activation. This Ca2+ accumulation may play a role in the excitotoxic mitochondrial dysfunction induced by NMDA.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources