Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan;274(1):G138-46.
doi: 10.1152/ajpgi.1998.274.1.G138.

Distinct effects of tetragastrin, histamine, and CCh on rat gastric mucin synthesis and contribution of NO

Affiliations

Distinct effects of tetragastrin, histamine, and CCh on rat gastric mucin synthesis and contribution of NO

T Ichikawa et al. Am J Physiol. 1998 Jan.

Abstract

Although gastrin, histamine, and carbachol (CCh) accelerate gastric mucin metabolism, information about their target cells of mucin production is lacking. To clarify this, we examined the effects of these stimulants, including the possible participation of nitric oxide (NO), on mucin biosynthesis in distinct sites and layers of rat gastric mucosa. Pieces of tissue obtained from the corpus and antrum were incubated in a medium containing radioactive precursors and each stimulant, with or without NO synthase (NOS) inhibitor. Distribution of NOS was compared with that of the specific mucins by immunostaining using specific antiserum and monoclonal antibodies. In the full-thickness corpus mucosa, tetragastrin enhanced [3H]glucosamine incorporation into mucin but had no effect on [14C]threonine incorporation. Both histamine and CCh dose dependently increased 3H- and 14C-labeled corpus mucin. Only CCh stimulated antral mucin biosynthesis. CCh stimulation was noted in the corpus mucosa after removal of surface mucous cells, but stimulation by tetragastrin or histamine disappeared as a result of this pretreatment. Only tetragastrin-induced activation was completely blocked by the NOS inhibitor. NOS immunoreactivity was limited to surface mucous cells. Mucus-producing cells present in the different sites and layers of the gastric mucosa have distinct mechanisms for regulation of mucin biosynthesis. Gastrin-stimulated mucin biosynthesis mediated by NO is limited to surface mucous cells of rat gastric oxyntic mucosa.

PubMed Disclaimer

Publication types

LinkOut - more resources