Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan;274(1):R209-13.
doi: 10.1152/ajpregu.1998.274.1.R209.

Amiloride-induced contraction of isolated guinea pig, mouse, and human fetal airways

Affiliations

Amiloride-induced contraction of isolated guinea pig, mouse, and human fetal airways

M J Christ et al. Am J Physiol. 1998 Jan.

Abstract

Nebulized amiloride has been proposed as therapy in cystic fibrosis to block Na+ hyperabsorption in airway epithelium and prevent dehydration of secretions. Patients with cystic fibrosis often have reaction airways. Bovine and canine trachea relax to amiloride in vitro, suggesting another benefit as a bronchodilator, whereas guinea pig trachea, a useful model of human airways, does not. We hypothesized that human airways would respond like guinea pig airways. Airway ring segments from guinea pigs, mice, and human fetuses were constricted with the concentration of acetylcholine producing 50-75% maximum contraction. Subsequent changes in isometric tension to cumulative additions of amiloride (10(-8)-10(-4) M) were measured. Guinea pig airways contracted 29 +/- 5%, mouse airways contracted 23 +/- 6%, and human fetal airways contracted 30 +/- 8%. Contraction to amiloride was mimicked by dimethylamiloride, a more selective inhibitor of the Na+/H+ antiporter, and was attenuated by protein kinase C (PKC) inhibition with GF109203X and staurosporine. The present study indicates that amiloride-induced airway contraction in guinea pigs and mice closely parallels the response in isolated human airways and that the mechanism may involve the Na+/H+ antiporter and PKC.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources