Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Jan;54(1):71-85.
doi: 10.1016/s0301-0082(97)00066-x.

Transforming growth factor-betas in neurodegenerative disease

Affiliations
Review

Transforming growth factor-betas in neurodegenerative disease

K C Flanders et al. Prog Neurobiol. 1998 Jan.

Abstract

Transforming growth factors-betas (TGF-betas), a family of multifunctional peptide growth factors, affect cells of the central nervous system (CNS). The three mammalian TGF-beta isoforms, TGF-betas 1, 2 and 3, are expressed in adult human brain. Since neuronal degeneration is a defining feature of CNS degenerative diseases, TGF-beta may be important because it can influence neuronal survival. In vitro TGF-beta promotes survival of rat spinal cord motoneurons and dopaminergic neurons. In addition to direct effects on neuronal survival, TGF-beta treatment of cultured astrocytes induces a reactive phenotype. Thus, TGF-beta may also normalize the extracellular matrix environment in degenerative diseases. The expression of TGF-betas change in response to neuronal injury. TGF-beta 1 expression increases in astrocytes and microglia in animal models of cerebral ischemia, while TGF-beta 2 expression increases in activated astroglial cells in human neurodegenerative diseases. TGF-betas protect neurons from a variety of insults. TGF-beta maintains survival of chick telencephalic neurons made hypoxic by treatment with cyanide and decreases the area of infarction when administered in animal models of cerebral ischemia. In vitro TGF-beta protects neurons from damage induced by treatment with beta-amyloid peptide, FeSO4 (induces production of reactive oxygen species), Ca2+ ionophores, glutamate, glutamate receptor agonists and MPTP (toxic for dopaminergic neurons). TGF-beta maintains mitochondrial potential and Ca2+ homeostasis and inhibits apoptosis in neurons. TGF-beta does not prevent neuronal degeneration in a rat model of Parkinson's disease and has yet to be tested in newly developed transgenic mouse models of Alzheimer's disease. TGF-beta is a potent neuroprotective agent which may affect the pathogenesis of neurodegenerative diseases of the CNS.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources