Oscillating response to a purine nucleotide disrupted by mutation in Paramecium tetraurelia
- PMID: 9461502
- PMCID: PMC1219119
- DOI: 10.1042/bj3300139
Oscillating response to a purine nucleotide disrupted by mutation in Paramecium tetraurelia
Abstract
The purine nucleotide GTP, when added extracellularly, induces oscillations in the swimming behaviour of the protist Paramecium tetraurelia. For periods as long as 10 min the cell swims backwards and forwards repetitively. The oscillations in swimming behaviour are driven by changes in membrane potential of the cell, which in turn are caused by periodic activation of inward Mg2+- and Na+-specific currents. We screened for and isolated mutants that are defective in this response, exploiting the fact that the net result of GTP on a population of cells is repulsion. One mutant, GTP-insensitive (gin A), is not repelled by GTP. In addition, GTP fails to induce repetitive backwards swimming in gin A mutants, although they swim backwards normally in response to other stimuli. GTP fails to evoke oscillations in membrane potential or Mg2+ and Na+ currents in the mutant, although the Mg2+ and Na+ conductances are not themselves measurably affected. A small, oscillating Ca2+ current induced by GTP in the wild type, which might be part of the mechanism that generates oscillations, is also missing from gin A cells. To our knowledge, gin A is the first example of a mutant defective in a purinergic response. We discuss the possibility that the gin A lesion affects the oscillator itself.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
