Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Feb;18(2):150-4.
doi: 10.1038/ng0298-150.

Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates

Affiliations

Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates

D Martindale et al. Nat Genet. 1998 Feb.

Abstract

It is unclear how polyglutamine expansion is associated with the pathogenesis of Huntington disease (HD). Here, we provide evidence that polyglutamine expansion leads to the formation of large intracellular aggregates in vitro and in vivo. In vitro these huntingtin-containing aggregates disrupt normal cellular architecture and increase in frequency with polyglutamine length. Huntingtin truncated at nucleotide 1955, close to the caspase-3 cleavage site, forms perinuclear aggregates more readily than full-length huntingtin and increases the susceptibility of cells to death following apoptotic stimuli. Further truncation of huntingtin to nucleotide 436 results in both intranuclear and perinuclear aggregates. For a given protein size, increasing polyglutamine length is associated with increased cellular toxicity. Asymptomatic transgenic mice expressing full-length huntingtin with 138 polyglutamines form exclusively perinuclear aggregates in neurons. These data support the hypothesis that proteolytic cleavage of mutant huntingtin leads to the development of aggregates which compromise cell viability, and that their localization is influenced by protein length.

PubMed Disclaimer

Publication types

MeSH terms