Characterization of human osteoblastic cells: influence of the culture conditions
- PMID: 9466680
- DOI: 10.1007/s11626-997-0154-7
Characterization of human osteoblastic cells: influence of the culture conditions
Abstract
Human osteoblastic cells were isolated enzymatically from adult human spongy bone and grown in MEM-Ham F12 1:1 medium supplemented with 2% Ultroser (USM). They were subcultured and examined for osteoblast features by morphological, histological, and biochemical approaches. The cells had a characteristic polyhedral morphology and produced a high level of alkaline phosphatase (ALKP). Confluent cultures were uniformly stained for ALKP and flow cytometry analysis with fluorescein diphosphate gave a single peak signal, reflecting a highly positive population, distinct from cultures of fibroblasts. The ALKP activity was stimulated by 1,25 (OH)2 vitamin D3. CD 44 was strongly expressed in these cultures, although osteoblasts are negative in vivo and osteocytes are positive. The main collagen synthesized was type I collagen and osteocalcin was produced after stimulation by vitamin D3. 10 mM betaGP induced mineralization and microprobe analysis of the crystals showed a composition close to hydroxyapatite. Changing the culture conditions to MEM-10% calf serum acted on cell behavior: it reduced the production of these biochemical markers of osteoblasts and the morphology became fibroblastlike with more rapid cell multiplication. The parameter most affected by the change in culture medium was ALKP, which was selected as the determinant criterion for defining an osteoblast culture. ALKP activity was then used to characterize a culture of cells seeded in a collagen gel.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
