Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Feb 1;350(1):19-25.
doi: 10.1006/abbi.1997.0469.

Two opposite signal transducing mechanisms regulate a G-protein-coupled guanylyl cyclase

Affiliations

Two opposite signal transducing mechanisms regulate a G-protein-coupled guanylyl cyclase

M J Alfonzo et al. Arch Biochem Biophys. .

Abstract

Membrane-bound guanylyl cyclase (GC) is regulated by muscarinic receptors (mAChRs). Carbamylcholine (CC) induces a "dual" biological response on GC activity. Thus, an activation is observed at 0.1 nM and a maximal response at 1 nM CC. However, at higher agonist concentration (> 100 nM), there is an agonist-dependent inhibition of GC. This CC dual response is affected by 4-DAMP and HDD (M3 antagonists), which produce a right-shift of the CC curve; the maximal CC dose response with 4-DAMP is more potent than that with HDD. Moreover, AFDX-DS (an M2 antagonist) increases basal activity and decreases the agonist-dependent inhibition. Neither the CC response nor the CC maximal dose responses are affected by pirenzepine (PZ, M1 antagonist). The agonist-dependent stimulation of GC activity is inhibited by 4-DAMP showing a -log IC50 = 8.4 +/- 0.4, while AFDX116 DS poorly inhibits such activity with a -log IC50 = 5.0 +/- 0.2. The agonist-independent (basal) GC activity also was inhibited by 4-DAMP, in a dose-dependent manner, with an IC50 = 8.5 +/- 0.2. Nonetheless, other muscarinic antagonists (PZ and HDD) were not able to inhibit this basal GC. Pertussis toxin treatment produces a complete blockade of the agonist-dependent inhibition of GC with a full expression of the agonist-dependent activation of membrane-bound GC. These results indicate that membrane-bound GC is regulated by muscarinic agents through two opposite signaling pathways; one involves the activation of GC via an M3 mAchR coupled to a PTX-insensitive G protein, while the GC inhibition is mediated through a PTX-sensitive Gi/o protein possibly coupled to an M2 mAChR.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources