Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan 16;275(2):177-85.
doi: 10.1006/jmbi.1997.1463.

Substitution of the C-terminal domain of the Escherichia coli RNA polymerase alpha subunit by that from Bacillus subtilis makes the enzyme responsive to a Bacillus subtilis transcriptional activator

Affiliations

Substitution of the C-terminal domain of the Escherichia coli RNA polymerase alpha subunit by that from Bacillus subtilis makes the enzyme responsive to a Bacillus subtilis transcriptional activator

M Mencía et al. J Mol Biol. .

Abstract

Regulatory protein p4 of Bacillus subtilis phage phi 29 activates transcription from the viral late A3 promoter by interacting with the C-terminal domain (CTD) of the B. subtilis RNA polymerase alpha subunit, thereby stabilizing the holoenzyme at the promoter. Protein p4 does not interact with the Escherichia coli RNA polymerase and cannot activate transcription with this enzyme. We have constructed a chimerical alpha subunit containing the N-terminal domain of the E. coli alpha subunit and the CTD of the B. subtilis alpha subunit. Reconstitution of RNA polymerases containing this chimerical alpha subunit, the E. coli beta and beta' subunits, and the vegetative sigma factor from either E. coli (sigma 70) or B. subtilis (sigma A), generated hybrid enzymes that were responsive to protein p4 and efficiently supported activation at the A3 promoter. Protein p4 activated transcription with the chimerical enzymes through the same activation surface used with B. subtilis RNA polymerase. Therefore, the B. subtilis alpha-CTD allowed activation by p4 even when the rest of the RNA polymerase subunits belonged to E. coli, a distantly related bacterium. These results strongly suggest that protein p4 works essentially by serving as an anchor that stabilizes RNA polymerase at the promoter.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources