Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Feb 15;101(4):737-45.
doi: 10.1172/JCI803.

Vasoactive intestinal peptide, forskolin, and genistein increase apical CFTR trafficking in the rectal gland of the spiny dogfish, Squalus acanthias. Acute regulation of CFTR trafficking in an intact epithelium

Affiliations

Vasoactive intestinal peptide, forskolin, and genistein increase apical CFTR trafficking in the rectal gland of the spiny dogfish, Squalus acanthias. Acute regulation of CFTR trafficking in an intact epithelium

R W Lehrich et al. J Clin Invest. .

Abstract

Defective trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common cause of cystic fibrosis. In chloride-secreting epithelia, it is well established that CFTR localizes to intracellular organelles and to apical membranes. However, it is controversial whether secretagogues regulate the trafficking of CFTR. To investigate whether acute hormonal stimulation of chloride secretion is coupled to the trafficking of CFTR, we used the intact shark rectal gland, a model tissue in which salt secretion is dynamically regulated and both chloride secretion and cellular CFTR immunofluorescence can be quantified in parallel. In rectal glands perfused under basal conditions without secretagogues, Cl- secretion was 151+/-65 microeq/h/g. Vasoactive intestinal peptide (VIP), forskolin, and genistein led to 10-, 6-, and 4-fold increases in Cl- secretion. In basal glands, quantitative confocal microscopy revealed CFTR immunofluorescence extending from the apical membrane deeply into the cell (7.28+/-0.35 micron). During stimulation with secretagogues, apical extension of CFTR immunofluorescence into the cell was reduced significantly to 3.24+/-0.08 micron by VIP, 4.08+/-0.13 by forskolin, and 3.19+/-0.1 by genistein (P < 0.001). Moreover, the peak intensity of CFTR fluorescence shifted towards the apical membrane (peak fluorescence 2.5+/-0.13 micron basal vs. 1.51+/-0.06, 1.77+/-0.1, and 1.38+/-0.05 for VIP, forskolin, and genistein; all P < 0.001). The increase in both Cl- secretion and apical CFTR trafficking reversed to basal values after removal of VIP. These data provide the first quantitative morphological evidence for acute hormonal regulation of CFTR trafficking in an intact epithelial tissue.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Clin Invest. 1977 Mar;59(3):576-81 - PubMed
    1. Am J Physiol. 1995 Oct;269(4 Pt 2):F594-600 - PubMed
    1. Am J Physiol. 1979 Aug;237(2):F138-44 - PubMed
    1. J Biol Chem. 1980 May 25;255(10):4758-62 - PubMed
    1. J Biol Chem. 1981 Jun 25;256(12):6400-7 - PubMed

Publication types