Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar 5;39(3):390-7.
doi: 10.1002/(sici)1097-4636(19980305)39:3<390::aid-jbm7>3.0.co;2-e.

Influence of hydroxyapatite particle size on bone cell activities: an in vitro study

Affiliations

Influence of hydroxyapatite particle size on bone cell activities: an in vitro study

J S Sun et al. J Biomed Mater Res. .

Abstract

Over the past decade, a large number of biomaterials have been proposed as artificial bone fillers for repairing bone defects. The material most widely used in clinical medicine is hydroxyapatite. The aim of our investigation was to study the effect of hydroxyapatite size mechanism on osteoblasts. The osteoblasts were cultured in vitro with 0.1% (1 mg/mL) of various sized hydroxyapatite particles (0.5-3.0, 37-63, 177-250, and 420-841 microm) for 1 h, 3 h, 1 day, 3 days, and 7 days. The results showed that adding hydroxyapatite particles to osteoblast cultures can significantly affect osteoblast cell count. Osteoblast populations decreased significantly. Osteoblast mean surface areas also changed significantly. Transforming growth factor-beta1 (TGF-beta1) concentrations in culture medium decreased significantly with the addition of hydroxyapatite particles. Prostaglandin E2 (PGE2) concentrations in medium increased significantly. The changes in TGF-beta1 and PGE2 concentration were more significant and persisted longer in smaller-particle groups. The inhibitory effects of hydroxyapatite particles on osteoblast cell cultures were mediated by the increased synthesis of PGE2. Caution should be exercised before using a hydroxyapatite product which could easily break down into fine particles.

PubMed Disclaimer

Publication types

LinkOut - more resources