Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan 1;779(1-2):9-16.
doi: 10.1016/s0006-8993(97)01064-0.

Developmental changes of GABA(A) receptor-chloride channels in rat Meynert neurons

Affiliations

Developmental changes of GABA(A) receptor-chloride channels in rat Meynert neurons

J S Rhee et al. Brain Res. .

Abstract

The developmental changes of GABA(A) receptors were investigated in Meynert neurons freshly dissociated from day 0, 2 week-, and 6 month-old rats using both nystatin and gramicidin perforated patch recording modes under voltage-clamp conditions. The age-related changes in the current amplitude and threshold concentration in the concentration-response relationships for GABA indicated the developmental alteration of the GABA(A) receptor subunits and the channel density. The GABA-induced E(Cl-) measured by the gramicidin perforated patch mode shifted to more negative with development. The decay time constant of GABAergic inhibitory postsynaptic spontaneous currents (sIPSCs) in the synaptic active zone accelerated with aging. The GABA-induced currents were potentiated in a concentration dependent manner in the presence of benzodiazepine (BZP) agonists, diazepam (DZP) and zolpidem (ZPM). The potentiation rate of DZP on the GABA(A) response decreased with aging, but not in the case of ZPM, which demonstrated a stronger action in the aging rat neurons. These results suggested that the GABA(A) receptor x Cl- channel complexes may thus change both the assembly and interaction of subunits as well as their functional roles with aging.

PubMed Disclaimer

Publication types