Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Jan;34(1):1-24.
doi: 10.2165/00003088-199834010-00001.

Clinical pharmacokinetics and pharmacodynamics of torasemide

Affiliations
Review

Clinical pharmacokinetics and pharmacodynamics of torasemide

H Knauf et al. Clin Pharmacokinet. 1998 Jan.

Abstract

The new loop diuretic torasemide belongs to the pyridine sulfonylurea class. It is well absorbed and yields a bioavailablity of about 80% in healthy individuals, even higher in patients with oedema. This is roughly double that of the 'classical' loop diuretic furosemide (frusemide) [26 to 65%]. Torasemide is highly bound to protein (99%) as is furosemide. The volume of distribution of torasemide was determined as 0.2 L/kg as compared with 0.11 to 0.18 L/kg for furosemide. Torasemide undergoes extensive hepatic metabolism; only 20% of the parent drug is recovered unchanged in the urine. For comparison only 10 to 20% of furosemide undergoes phase II metabolisation (to the glucuronide). In chronic renal failure the renal clearance of torasemide decreased in proportion to the decrease of the patients' glomerular filtration rate, whereas the total plasma clearance (3 times that of the renal clearance) appeared to be independent of renal function. As expected, the renal excretion of torasemide metabolites is significantly retarded in renal disease. The pharmacokinetics of torasemide are significantly influenced by liver disease. Total plasma clearance of torasemide was reduced to about half of that found in the control group, yielding an increase in elimination half-life. A greater than normal fraction of torasemide was recovered in the urine of patients with cirrhosis. In contrast, the kinetics of furosemide appeared to depend more on kidney function than on liver disease. The pharmacodynamics of torasemide are principally the same as those reported from conventional loop diuretics due to their interference with one binding site in the thick ascending limb of Henle's loop, the Na+:K+:2Cl- carrier. The maximum natriuretic effect of all loop diuretics amounts to about 3 mmol Na+/min. Members of this class differ, however, with respect to their intravenous potency or affinity for the receptor, respectively: bumetanide > piretanide > torasemide > furosemide. So far, the only loop diuretic which has been shown to effectively lower high blood pressure is torasemide. This effect occurs at the low dose of 2.5 mg/day.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Eur J Clin Pharmacol. 1990;39(4):337-43 - PubMed
    1. Clin Pharmacol Ther. 1994 Jul;56(1):39-47 - PubMed
    1. Kidney Int. 1987 Oct;32(4):572-8 - PubMed
    1. Cardiology. 1994;84 Suppl 2:57-67 - PubMed
    1. Clin Pharmacokinet. 1990 Jun;18(6):460-71 - PubMed

MeSH terms