Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Feb;88(2):403-9.
doi: 10.1097/00000542-199802000-00019.

Effects of temperature on cerebral tissue oxygen tension, carbon dioxide tension, and pH during transient global ischemia in rabbits

Affiliations

Effects of temperature on cerebral tissue oxygen tension, carbon dioxide tension, and pH during transient global ischemia in rabbits

A Bacher et al. Anesthesiology. 1998 Feb.

Abstract

Background: A decrease in brain temperature (Tbrain) causes a decrease in the cerebral metabolic rate for oxygen (CMRO2) and provides potent neuroprotection against ischemic damage. In the present study, the effects of mild to moderate hypothermia on cerebral tissue oxygen tension (PO2 brain), carbon dioxide tension (PCO2 brain), and pH (pHbrain) were monitored during short episodes of global cerebral ischemia.

Methods: After approval by the Animal Care and Use Committee, 10 New Zealand white rabbits were anesthetized (1% halothane in air) and mechanical ventilation was adjusted to maintain the arterial carbon dioxide tension at 35 mmHg (alpha-stat). A sensor to measure PO2 brain, PCO2 brain, pHbrain, and Tbrain was inserted into the brain through a burr hole in the skull. Tbrain was adjusted to 38 degrees C, 34.4 degrees C, and 29.4 degrees C in a random sequence in each animal. PO2 brain, PCO2brain, and pHbrain (all variables are reported at the actual Tbrain) were recorded every 10 s during a 5-min baseline, 3 min of cerebral ischemia induced by inflation of a neck tourniquet, and 10 min of reperfusion at each level of Tbrain. Analysis of variance and Dunnett's test were used for statistical analysis. Data are presented as means +/- SD.

Results: During ischemia, PO2 brain decreased from 56 +/- 3 to 33 +/- 2 mmHg at 38 degrees C, from 58 +/- 3 to 32 +/- 3 mmHg at 34.4 degrees C, and from 51 +/- 2 to 32 +/- 2 mmHg at 29.4 degrees C (p = NS). PCO2 brain increased by 6.7 +/- 2 mmHg at 38 degrees C, by 5.1 +/- 1.4 mmHg at 34.4 degrees C, and by 2.3 +/- 0.8 mmHg at 29.4 degrees C. pHbrain inversely followed the trend of PCO2 brain.

Conclusions: The attenuated increase in PCO2 brain during hypothermic ischemia results from the reduced CMRO2. The similar decrease in PO2 brain at all temperature levels indicates that despite the reduction in CMRO2, PO2 brain is no better preserved during brief episodes of hypothermic ischemia than during normothermic ischemia.

PubMed Disclaimer

Publication types