Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Feb 10;37(6):1532-9.
doi: 10.1021/bi971356z.

Calcium binding studies of photosystem II using a calcium-selective electrode

Affiliations

Calcium binding studies of photosystem II using a calcium-selective electrode

G N Grove et al. Biochemistry. .

Abstract

The identification of Ca2+ as a cofactor in photosynthetic O2 evolution has encouraged research into the role of Ca2+ in photosystem II (PSII). Previous methods used to identify the number of binding sites and their affinities were not able to measure Ca2+ binding at thermodynamic equilibrium. We introduce the use of a Ca2(+)-selective electrode to study equilibrium binding of Ca2+ to PSII. The number and affinities of binding sites were determined via Scatchard analysis on a series of PSII membrane preparations progressively depleted of the extrinsic polypeptides and Mn. Untreated PSII membranes bound approximately 4 Ca2+ per PSII with high affinity (K = 1.8 microM) and a larger number of Ca2+ with lower affinity. The high-affinity sites are assigned to divalent cation-binding sites on the light-harvesting complex II that are involved in membrane stacking, and the lower-affinity sites are attributed to nonspecific surface-binding sites. These sites were also observed in all of the extrinsic polypeptide- and Mn-depleted preparations. Depletion of the extrinsic polypeptides and/or Mn exposed additional very high-affinity Ca2(+)-binding sites which were not in equilibrium with free Ca2+ in untreated PSII, owing to the diffusion barrier created by the extrinsic polypeptides. Ca2(+)-depleted PSII membranes lacking the 23 and 17 kDa extrinsic proteins bound an additional 2.5 Ca2+ per PSII with K = 0.15 microM. This number of very high-affinity Ca2(+)-binding sites agrees with the previous work of Cheniae and co-workers [Kalosaka, K., et al. (1990) in Current Research in Photosynthesis (Baltscheffsky, M., Ed.) pp 721-724, Kluwer, Dordrecht, The Netherlands] whose procedure for Ca2+ depletion was used. Further depletion of the 33 kDa extrinsic protein yielded a sample that bound only 0.7 very high-affinity Ca2+ per PSII with K = 0.19 microM. The loss of 2 very high-affinity Ca2(+)-binding sites upon depletion of the 33 kDa extrinsic protein could be due to a structural change of the O2-evolving complex which lost 2-3 of the 4 Mn ions in this sample. Finally, PSII membranes depleted of Mn and the 33, 23, and 17 kDa extrinsic proteins bound approximately 4 very high-affinity Ca2+ per PSII with K = 0.08 microM. These sites are assigned to Ca2+ binding to the vacant Mn sites.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources