Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan;78(1):9-17.
doi: 10.1007/s004220050408.

A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance

Affiliations

A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance

G Taga. Biol Cybern. 1998 Jan.

Abstract

Theoretical studies on human locomotion have shown that a stable and flexible gait emerges from the dynamic interaction between the rhythmic activity of a neural system composed of a neural rhythm generator (RG) and the rhythmic movement of the musculo-skeletal system. This study further explores the mechanism of the anticipatory control of locomotion based on the emergent properties of a neural system that generates the basic pattern of gait. A model of the neuro-musculo-skeletal system to execute the task of stepping over a visible obstacle with both limbs during walking is described. The RG in the neural system was combined with a system referred to as a discrete movement generator (DM), which receives both the output of the RG and visual information regarding the obstacle and generates discrete signals for modification of the basic gait pattern. A series of computer simulations demonstrated that an obstacle placed at an arbitrary position can be cleared by sequential modifications of gait: (1) modulating the step length when approaching the obstacle and (2) modifying the trajectory of the swing limbs while stepping over it. This result suggests that anticipatory adjustments are produced not by the unidirectional flow of the information from visual signals to motor commands but by the bi-directional circulation of information between the DM and the RG. The validity of this model is discussed in relation to motor cortical activity during anticipatory modifications in cats and the ecological psychology of visuo-motor control in humans.

PubMed Disclaimer

Publication types

LinkOut - more resources