Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Feb;274(2):C430-9.
doi: 10.1152/ajpcell.1998.274.2.C430.

Cyclic ADP-ribose activates caffeine-sensitive calcium channels from sea urchin egg microsomes

Affiliations

Cyclic ADP-ribose activates caffeine-sensitive calcium channels from sea urchin egg microsomes

C F Pérez et al. Am J Physiol. 1998 Feb.

Abstract

Adenosine 5'-cyclic diphosphoribose [cyclic ADP-ribose (cADPR)], a metabolite of NAD+ that promotes Ca2+ release from sea urchin egg homogenates and microsomal fractions, has been proposed to act as an endogenous agonist of Ca2+ release in sea urchin eggs. We describe experiments showing that a microsomal fraction isolated from Tetrapigus nyger sea urchin eggs displayed Ca(2+)-selective single channels with conductances of 155.0 +/- 8.0 pS in asymmetric Cs+ solutions and 47.5 +/- 1.1 pS in asymmetric Ca2+ solutions. These channels were sensitive to stimulation by Ca2+, ATP, and caffeine, but not inositol 1,4,5-trisphosphate, and were inhibited by ruthenium red. The channels were also activated by cADP-ribose in a Ca(2+)-dependent fashion. Calmodulin and Mg2+, but not heparin, modulated channel activity in the presence of cADP-ribose. We propose that these Ca2+ channels constitute the intracellular Ca(2+)-induced Ca2+ release pathway that is activated by cADP-ribose in sea urchin eggs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources