Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Feb;274(2):G389-96.
doi: 10.1152/ajpgi.1998.274.2.G389.

Vitamin D increases tight-junction conductance and paracellular Ca2+ transport in Caco-2 cell cultures

Affiliations

Vitamin D increases tight-junction conductance and paracellular Ca2+ transport in Caco-2 cell cultures

M V Chirayath et al. Am J Physiol. 1998 Feb.

Abstract

We investigated the effects of 1 alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3] on paracellular intestinal Ca2+ absorption by determination of transepithelial electric resistance (TEER), as a measure of tight-junction ion permeability and bidirectional transepithelial 45Ca2+ fluxes in confluent Caco-2 cell cultures. The rise of TEER to steady-state levels of approximately 2,000 omega.cm2 was significantly attenuated by 1,25(OH)2D3 (by up to 50%) in a dose-dependent fashion between 10(-11) and 10(-8) M. Synthetic analogs of 1,25(OH)2D3, namely, 1 alpha,25-dihydroxy-16-ene,23-yne-vitamin D3 and 1 alpha,25-dihydroxy-26,27-hexafluoro-16-ene,23-yne-vitamin D3, exhibited similar biopotency, whereas their genomically inactive 1-deoxy congeners were only marginally effective. Enhancement of transepithelial conductance of Caco-2 cell monolayers by vitamin D was accompanied by a significant increase in bidirectional transepithelial 45Ca2+ fluxes. Although 1,25(OH)2D3 also induced cellular 45Ca2+ uptake from the apical aspect of Caco-2 cell layers and upregulated the expression of calbindin-9kDa mRNA, no significant contribution of the Ca(2+)-adenosinetriphosphatase-mediated transcellular pathway to transepithelial Ca2+ transport could be detected. Therefore stimulation of Ca2+ fluxes across confluent Caco-2 cells very likely results from a genomic effect of vitamin D sterols on assembly and permeability of tight-junctional complexes.

PubMed Disclaimer

Publication types

LinkOut - more resources