Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Feb 23;82(3):367-74.
doi: 10.1161/01.res.82.3.367.

Structural domains in phospholemman: a possible role for the carboxyl terminus in channel inactivation

Affiliations
Free article
Review

Structural domains in phospholemman: a possible role for the carboxyl terminus in channel inactivation

Z Chen et al. Circ Res. .
Free article

Abstract

Phospholemman (PLM) is a small (72-amino acid) transmembrane protein found in cardiac sarcolemma that is a major substrate for several protein kinases in vivo. Detailed structural data for PLM is lacking, but several studies have described an ion conductance that results from PLM expression in oocytes. Moreover, addition of purified PLM to lipid bilayers generates similar ion currents, suggesting that the PLM molecule itself might be sufficient for channel formation. To provide a framework for understanding the function of PLM, we investigated PLM topology and structure in sarcolemmal membrane vesicles and analyzed purified recombinant PLM. Immunoblot analyses with site-specific antibodies revealed that the extracellular segment (residues 1 to 17) exists in a protected configuration highly resistant to proteases, even in detergent solutions. The intracellular portion of the molecule (residues 38 to 72), in contrast, was highly susceptible to proteases. Trypsin treatment produced a limit peptide (residues 1 to 43), which showed little change in electrophoretic mobility in SDS gels and retained the ion-channel activity in lipid bilayers that is characteristic of the full-length protein. In addition, we found that conductance through PLM channels exhibited rapid inactivation during depolarizing ramps at voltages greater than +/- 50 mV, Channels formed by trypsinized PLM or recombinant PLM 1-43 exhibited dramatic reductions in voltage-dependent inactivations. Our data point to distinct domains within the PLM molecule that may correlate with functional properties of channel activity observed in oocytes and lipid bilayers.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources