Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar 6;273(10):5461-7.
doi: 10.1074/jbc.273.10.5461.

Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a

Affiliations
Free article

Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a

P Young et al. J Biol Chem. .
Free article

Abstract

Ubiquitylated proteins are degraded by the 26 S protease, an enzyme complex that contains 30 or more unique subunits. One of these proteins, subunit 5a (S5a), has been shown to bind ubiquitin-lysozyme conjugates and free polyubiquitin chains. Using deletional analysis, we have identified in the carboxyl-terminal half of human S5a, two independent polyubiquitin binding sites whose sequences are highly conserved among higher eukaryotic S5a homologs. The sites are approximately 30-amino acids long and are separated by 50 intervening residues. When expressed as small fragments or when present in full-length S5a molecules, the sites differ at least 10-fold in their apparent affinity for polyubiquitin chains. Each binding site contains 5 hydrophobic residues that form an alternating pattern of large and small side chains, e.g. Leu-Ala-Leu-Ala-Leu, and this pattern is essential for binding ubiquitin chains. Based on the importance of the alternating hydrophobic residues in the binding sites and previous studies showing that a hydrophobic patch on the surface of ubiquitin is essential for proteolytic targeting, we propose a model for molecular recognition of polyubiquitin chains by S5a.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources