Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar 6;273(10):5631-7.
doi: 10.1074/jbc.273.10.5631.

Two small subunits in Arabidopsis RNA polymerase II are related to yeast RPB4 and RPB7 and interact with one another

Affiliations
Free article

Two small subunits in Arabidopsis RNA polymerase II are related to yeast RPB4 and RPB7 and interact with one another

R M Larkin et al. J Biol Chem. .
Free article

Abstract

An Arabidopsis cDNA (AtRPB15.9) that encoded a protein related to the RPB4 subunit in yeast RNA polymerase II was cloned. The predicted molecular mass of 15.9 kDa for the AtRPB15.9 protein was significantly smaller than 25 kDa for yeast RBP4. In SDS-PAGE, AtRPB15.9 migrated as the seventh or eighth largest subunit (i.e. apparent molecular mass of 14-15 kDa) in Arabidopsis RNA polymerase II, whereas RPB4 migrates as the fourth largest subunit (i.e. apparent molecular mass of 32 kDa) in yeast RNA polymerase II. Unlike yeast RPB4 and RPB7, which dissociate from RNA polymerase II under mildly denaturing conditions, plant subunits related to RPB4 and RPB7 are more stably associated with the enzyme. Recombinant AtRPB15.9 formed stable complexes with AtRPB19.5 (i.e. a subunit related to yeast RPB7) in vitro as did recombinant yeast RPB4 and RPB7 subunits. Stable heterodimers were also formed between AtRPB15. 9 and yeast RPB7 and between yeast RPB4 and AtRPB19.5.

PubMed Disclaimer

Publication types

Associated data