Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan;15(1):6-16.
doi: 10.1093/oxfordjournals.molbev.a025847.

Distribution of chromosome length variation in natural isolates of Escherichia coli

Affiliations

Distribution of chromosome length variation in natural isolates of Escherichia coli

U Bergthorsson et al. Mol Biol Evol. 1998 Jan.

Abstract

Large-scale variation in chromosome size was analyzed in 35 natural isolates of Escherichia coli by physical mapping with a restriction enzyme whose sites are restricted to rDNA operons. Although the genetic maps and chromosome lengths of the laboratory strains E. coli K12 and Salmonella enterica sv. Typhimurium LT2 are highly congruent, chromosome lengths among natural strains of E. coli can differ by as much as 1 Mb, ranging from 4.5 to 5.5 Mb in length. This variation has been generated by multiple changes dispersed throughout the genome, and these alterations are correlated; i.e., additions to one portion of the chromosome are often accompanied by additions to other chromosomal regions. This pattern of variation is most probably the result of selection acting to maintain equal distances between the replication origin and terminus on each side of the circular chromosome. There is a large phylogenetic component to the observed size variation: natural isolates from certain subgroups of E. coli have consistently larger chromosome, suggesting that much of the additional DNA in larger chromosomes is shared through common ancestry. There is no significant correlation between genome sizes and growth rates, which counters the view that the streamlining of bacterial genomes is a response to selection for faster growth rates in natural populations.

PubMed Disclaimer

Publication types

MeSH terms