Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar;139(3):1338-45.
doi: 10.1210/endo.139.3.5818.

Regulation of matrix metalloproteinases (MMP-2, -3, -9, and -13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption

Affiliations

Regulation of matrix metalloproteinases (MMP-2, -3, -9, and -13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption

K Kusano et al. Endocrinology. 1998 Mar.

Abstract

Interleukin-1 (IL-1) greatly induces osteoclast formation and stimulates bone resorption of mouse calvaria in culture. In the presence of soluble IL-6 receptor (sIL-6R), IL-6 similarly induces osteoclast formation, but the potency of IL-6 in inducing bone resorption in organ culture is weaker than that of IL-1. To study the differences in bone-resorbing activity between IL-1 and IL-6, we examined the effects of the two cytokines on the induction of matrix metalloproteinases (MMPs). In mouse calvarial cultures, IL-1 markedly enhanced the messenger RNA (mRNA) expression of MMP-13 (collagenase 3), MMP-2 (gelatinase A), MMP-9 (gelatinase B), and MMP-3 (stromelysin 1), which associated with increases in bone matrix degradation. A hydroxamate inhibitor of MMPs significantly suppressed bone-resorbing activity induced by IL-1. Gelatin zymography showed that both pro- and active-forms of MMP-2 and MMP-9 were detected in the conditioned medium collected from calvarial cultures, and IL-1 markedly stimulated both pro- and active-forms of the two gelatinases. IL-6 with sIL-6R also stimulated mRNA expression and biological activities of these MMPs, but the potency was much weaker than that of IL-1. Conditioned medium collected from IL-1-treated calvariae degraded native type I collagen, but 3/4- and 1/4-length collagen fragments were not detected, suggesting that both collagenases and gelatinases synergistically degraded type I collagen into smaller fragments. In mouse osteoblastic cells, the expression ofMMP-2, MMP-3, and MMP-13 mRNAs could be detected, and they were markedly enhanced by IL-1alpha on days 2 and 5. IL-6 with sIL-6R also induced expression of MMP-13 and MMP-2 mRNAs on day 2, but the expression was rather transient. These results demonstrate that the potency of induction of MMPs by IL-1 and IL-6 is closely linked to the respective bone-resorbing activity, suggesting that MMP-dependent degradation of bone matrix plays a key role in bone resorption induced by these cytokines.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources