Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan 15;251(1-2):382-8.
doi: 10.1046/j.1432-1327.1998.2510382.x.

Amino acid substitutions at the dimer interface of human glucose-6-phosphate dehydrogenase that increase thermostability and reduce the stabilising effect of NADP

Affiliations
Free article

Amino acid substitutions at the dimer interface of human glucose-6-phosphate dehydrogenase that increase thermostability and reduce the stabilising effect of NADP

D A Scopes et al. Eur J Biochem. .
Free article

Abstract

Over 100 mutations of the G6PD gene have been documented. With the construction of the molecular model of glucose-6-phosphate dehydrogenase, based on the structure of the bacterial Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase, it has been possible to superimpose these amino acid changes on to the structure of the glucose-6-phosphate dehydrogenase molecule. There are a large number of severe disease causing mutations at the dimer interface which usually cause decreased thermostability. We have used this knowledge to predict amino acid changes which would effect an increase in the stability of the dimer. The aspartic acid at residue 421 was chosen as it is a negatively charged residue at the centre of the dimer interface in an area rich in negatively charged residues. This residue was changed to a neutrally charged alanine or asparagine, or a positively charged lysine or arginine. The thermostability of the enzyme was increased when residue 421 was neutral (A or N) and increased further when positive (K or R). NADP is known to exert a concentration dependent stabilising effect on the glucose-6-phosphate dehydrogenase dimer. However the concentration-dependent stabilising effect of NADP was reduced in the residue-421 substitutions in a manner which was inversely proportional to charge change. These results suggest that changes at the dimer interface can also affect the distant (> 20 A) NADP-binding site, and vice versa; an attempt has been made to explain these interactions based on the molecular model of human glucose-6-phosphate dehydrogenase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources