Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar;284(3):998-1005.

Effect of magnesium on calcium responses to vasopressin in vascular smooth muscle cells of spontaneously hypertensive rats

Affiliations
  • PMID: 9495860

Effect of magnesium on calcium responses to vasopressin in vascular smooth muscle cells of spontaneously hypertensive rats

R M Touyz et al. J Pharmacol Exp Ther. 1998 Mar.

Abstract

This study investigated the modulatory effect of magnesium (Mg++) on basal and agonist-stimulated intracellular free calcium (Ca++) concentration ([Ca++]i) in vascular smooth muscle cells from spontaneously hypertensive rats (SHR). Effects of increasing extracellular Mg++ concentration ([Mg++]e) on vasopressin (AVP)-induced [Ca++]i responses were determined in primary cultured unpassaged vascular smooth muscle cells from mesenteric and aortic vessels (representing resistance and conduit arteries, respectively) of Wistar Kyoto rats (WKY) and SHR. [Ca++]i was measured by fura-2 methodology. Underlying mechanisms for Mg++ actions were determined in Ca(++)-free buffer and in the presence of diltiazem (10(-6) M), an L-type Ca++ channel blocker. Basal and AVP-stimulated [Ca++]i responses were significantly increased (p < .05) in SHR (pD2 = 8.3 +/- 0.1, Emax = 532 +/- 14 nM for SHR; pD2 = 8.0 +/- 0.04, Emax = 480 +/- 15 nM for WKY). [Mg++]e dose-dependently reduced basal and agonist-induced [Ca++]i responses. High [Mg++]e (4.8 mM) attenuated [Ca++]i responses to AVP in WKY (Emax = 328 +/- 30 nM) and SHR (Emax = 265 +/- 27 nM) and normalized AVP-elicited hyper-responsiveness in SHR (pD2 in high [Mg++]e, 8.1 +/- 0.3 for SHR, 7.8 +/- 0.6 for WKY). Extracellular Ca++ withdrawal and diltiazem abolished the attenuating effects of high [Mg++]e in WKY but not in SHR. These findings demonstrate that Mg++ dose-dependently reduces [Ca++]i and that high [Mg++]e attenuates AVP-stimulated [Ca++]i responses and normalizes sensitivity to AVP in SHR. In WKY, Mg++ actions are dependent primarily on Ca++ influx through L-type Ca++ channels, whereas in SHR, the modulatory effects of [Mg++]e are mediated both by Ca++ influx through Ca++ channels and by intracellular Ca++ release.

PubMed Disclaimer

Publication types

LinkOut - more resources