Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar 13;273(11):6518-24.
doi: 10.1074/jbc.273.11.6518.

Influenza virus M2 protein slows traffic along the secretory pathway. pH perturbation of acidified compartments affects early Golgi transport steps

Affiliations
Free article

Influenza virus M2 protein slows traffic along the secretory pathway. pH perturbation of acidified compartments affects early Golgi transport steps

J R Henkel et al. J Biol Chem. .
Free article

Abstract

M2, an acid-activated ion channel, is an influenza A virus membrane protein required for efficient nucleocapsid release after viral fusion with the endosomal membrane. Recombinant M2 slows protein traffic through the Golgi complex (Sakaguchi, T., Leser, G. P)., and Lamb, R. A. (1996) J. Cell Biol. 133, 733-47). Despite its critical role in viral infection, little is known about the subcellular distribution of M2 or its fate following delivery to the plasma membrane (PM). We measured the kinetics of M2 transport in HeLa cells, and found that active M2 reached the PM considerably more slowly than inactive M2. In addition, M2 delayed intra-Golgi transport and cell surface delivery of influenza hemagglutinin (HA). We hypothesized that the effects of M2 on transport through non-acidified compartments are due to inefficient retrieval from the trans-Golgi of machinery required for intra-Golgi transport. In support of this, acutely activated M2 had no effect on intra-Golgi transport of HA, but still slowed HA delivery to the PM. Thus, M2 has an indirect effect on early transport steps, but a direct effect on late steps in PM delivery. These findings may help explain the conflicting and unexplained effects on protein traffic observed with other perturbants of intraorganelle pH such as weak bases and inhibitors of V-type ATPases.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources