Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan;14(1):93-104.
doi: 10.1006/meth.1997.0568.

Photoreceptor phosphodiesterase: interaction of inhibitory gamma subunit and cyclic GMP with specific binding sites on catalytic subunits

Affiliations

Photoreceptor phosphodiesterase: interaction of inhibitory gamma subunit and cyclic GMP with specific binding sites on catalytic subunits

N O Artemyev et al. Methods. 1998 Jan.

Abstract

The photoreceptor phosphodiesterase (PDE6) is the central effector enzyme in the phototransduction cascade of photoreceptor cells. It is the only known PDE isoform the activity of which is regulated by interaction with a heterotrimeric G protein. The rod PDE6 holoenzyme is a tetrameric protein consisting of two large catalytic alpha and beta subunits and two small gamma subunits, which serve as potent inhibitors of PDE6. In dark-adapted photoreceptors, the gamma subunits maintain PDE6 activity at a low level. When exposed to light the visual pigment rhodopsin activates the retinal G protein, transducin, leading to release of the inhibitory action of the gamma subunits. In addition to the active sites where cGMP is hydrolyzed, the alpha and beta catalytic subunits have high-affinity, noncatalytic cGMP binding sites. These noncatalytic sites do not directly regulate cGMP catalysis at the active site, but rather can modulate the affinity with which the gamma subunits bind to the catalytic subunits. This article describes a number of experimental approaches that have recently been developed for studying the interactions between catalytic and inhibitory subunits of PDE6, as well as the dynamics of cGMP binding to and dissociation from the PDE6 noncatalytic sites.

PubMed Disclaimer

Publication types

LinkOut - more resources