Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Dec;22(6):507-14.
doi: 10.1016/s0143-4160(97)90078-6.

Tacrolimus (FK506) modulates calcium release and contractility of intestinal smooth muscle

Affiliations

Tacrolimus (FK506) modulates calcium release and contractility of intestinal smooth muscle

K Bielefeldt et al. Cell Calcium. 1997 Dec.

Abstract

Several proteins have been identified that associate with calcium release channels and potentially regulate their function. Using tacrolimus as a pharmacological tool, we investigated whether the immunophilin FKBP12 modulates ryanodine receptor channels in intestinal smooth muscle. Results with PCR demonstrated the presence of type-3 ryanodine receptor and FKBP12 in this tissue. Tacrolimus caused an irreversible increase of the intracellular calcium concentration, which was abolished by pretreatment with caffeine. The calcium channel blocker verapamil did not affect the response to tacrolimus. Tacrolimus decreased the calcium concentration in the sarcoplasmic reticulum. Caffeine, but not inositol 1,4,5-trisphosphate or heparin, abolished this effect. Finally, tacrolimus significantly and irreversibly decreased the tension generated by intestinal muscle strips. These data support our hypothesis that the immunophilin FKBP12 modulates ryanodine receptor function in smooth muscle. Interactions between such regulatory proteins and calcium release channels may play an important role in excitation-contraction coupling and other intracellular signaling processes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources