Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar 20;273(12):6921-7.
doi: 10.1074/jbc.273.12.6921.

Ceramide formation leads to caspase-3 activation during hypoxic PC12 cell death. Inhibitory effects of Bcl-2 on ceramide formation and caspase-3 activation

Affiliations
Free article

Ceramide formation leads to caspase-3 activation during hypoxic PC12 cell death. Inhibitory effects of Bcl-2 on ceramide formation and caspase-3 activation

S Yoshimura et al. J Biol Chem. .
Free article

Abstract

PC12 cells undergo apoptosis as well as necrosis following exposure to hypoxia. Following a 6-h hypoxic treatment, a time-dependent increase in intracellular ceramide level was observed with a concurrent decrease in sphingomyelin. It was also shown that the hypoxia-induced ceramide accumulation resulted from activation of neutral magnesium-dependent sphingomyelinase. Comparative kinetic analyses of the neutral sphingomyelinase in the cells under normoxia and hypoxia showed that hypoxia increased Vmax but did not affect Km of the enzyme. In PC12 cells overexpressing Bcl-2 which show strong resistance to hypoxia, sphingomyelin hydrolysis was decreased and activation of neutral sphingomyelinase was reduced. Addition of exogenous C2-ceramide induced cell death and activated caspase-3 as markedly as the hypoxia treatment. On the other hand, in PC12 cells overexpressing Bcl-2, significant decreases in cell death and inhibition of caspase-3 activation were observed after exogenous addition of C2-ceramide. The inhibitors of caspase-3 prevented cell death by either hypoxia or C2-ceramide. These results suggest that ceramide generated by activation of neutral magnesium-dependent sphingomyelinase mediates hypoxic cell death and that Bcl-2 has inhibitory effects on ceramide formation and caspase activation.

PubMed Disclaimer

Publication types

LinkOut - more resources