Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Feb 25;1363(2):147-56.
doi: 10.1016/s0005-2728(97)00096-0.

Non-photochemical quenching of chlorophyll fluorescence in photosynthesis. 5-hydroxy-1,4-naphthoquinone in spinach thylakoids as a model for antenna based quenching mechanisms

Affiliations
Free article

Non-photochemical quenching of chlorophyll fluorescence in photosynthesis. 5-hydroxy-1,4-naphthoquinone in spinach thylakoids as a model for antenna based quenching mechanisms

S Vasil'ev et al. Biochim Biophys Acta. .
Free article

Abstract

In vivo mechanisms of non-photochemical quenching that contribute to energy dissipation in higher plants are still a source of some controversy. In the present study we used an exogenous oxidized quinone, 5-hydroxy-1,4-naphthoquinone to induce quenching of chlorophyll excited states in photosynthetic light-harvesting antenna and to elucidate the mechanism of non-photochemical quenching of chlorophyll fluorescence by this quinone. Excitation dynamics in isolated spinach thylakoids in the presence of an exogenous fluorescence quencher was studied by a combined analysis of data gathered from independent techniques (fluorescence yields, effective absorption cross-sections and picosecond kinetics). The application of a kinetic model for photosystem II to a combined data set of fluorescence decay kinetics and absorbance cross-section measurements was used to quantify antenna quenching by a model antenna quencher, 5-hydroxy-1,4-naphthoquinone. We observed depressions in F0 and photosystem II absorption cross-sections, paralleled with an increase of the rate constant for excitation decay in antenna. This approach is a first step towards quantifying the amount of antenna quenching contributing to non-photochemical quenching in vivo, evaluation of the contributions of antenna and reaction centre mechanisms to it and localization of the sites of non-photochemical energy dissipation in intact plant systems. Copyright 1998 Elsevier Science B.V.

PubMed Disclaimer

LinkOut - more resources