Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Feb;28(2):221-30.
doi: 10.1016/0168-8278(88)80009-6.

Differential Ca2+ signaling in neonatal and adult rat hepatocyte doublets

Affiliations
Comparative Study

Differential Ca2+ signaling in neonatal and adult rat hepatocyte doublets

N Enomoto et al. J Hepatol. 1998 Feb.

Abstract

Background/aims: Intracellular Ca2+ ([Ca2+]i) is important in various cellular functions, including cellular proliferation and differentiation. To elucidate the relationship between [Ca2+]i oscillations and physiological hepatocyte proliferation, phenylephrine-evoked [Ca2+]i responses were sequentially investigated using short-term cultured hepatocyte doublets obtained from 1-, 3-, 6- and 8-week-old rats.

Methods/results: DNA synthesis in hepatocytes, determined by BrdU incorporation, was approximately 20% in 1-week-old rats, and decreased to <1% as the rats aged. Correspondingly, [Ca2+]i responses evoked by 10 micromol/l phenylephrine in hepatocyte doublets shifted from transient to sinusoidal-type [Ca2+]i oscillations and then to a sustained increase in [Ca2+]i, followed by a gradual return to baseline. The incidence of [Ca2+]i oscillations was 100+/-0.0%, 83.3+/-16.7%, 38.7+/-0.6% and 5.5+/-5.0% in 1-, 3-, 6- and 8-week-old rats, respectively. Removal of extracellular Ca2+ did not abolish [Ca2+]i oscillations, indicating that [Ca2+]i oscillations were caused primarily by Ca2+ mobilization from internal sites of the cells. The [Ca2+]i level in each of the adjacent cells was synchronous in sustained increase in [Ca2+]i, but asynchronous in [Ca2+]i oscillations. In proliferating doublets obtained from 1-week-old rats, the frequency of oscillations increased in a dose-dependent manner for phenylephrine concentrations of 1 to 100 micromol/l.

Conclusions: Phenylephrine-evoked [Ca2+]i oscillations were directly related to hepatocyte proliferation and were mediated by frequency modulation. These results suggest that phenylephrine-evoked [Ca2+]i oscillations may contribute to cell-cycle progression of hepatocytes in physiological liver growth.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources