Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Mar 17;244(2):317-24.
doi: 10.1006/bbrc.1998.8086.

The role of calcium in the cell cycle: facts and hypotheses

Affiliations
Review

The role of calcium in the cell cycle: facts and hypotheses

L Santella. Biochem Biophys Res Commun. .

Abstract

The regulation of cell cycle progression is a complex process which involves kinase cascades, protease action, production of second messengers and other operations. Increasing evidence now compellingly suggests that changes in the intracellular Ca2+ concentration may also have a crucial role. Ca2+ transients occur at the awakening from quiescence, at the G/S transition, during S-phase, and at the exit from mitosis. They may lead to the activation of Ca2+ binding proteins like S-100, but the key decoder of the Ca2+ signals in the cycle is calmodulin. Activation of calmodulin leads to the stimulation of protein kinases, i.e., CaM-kinase II, and of the CaM-dependent protein phosphatase calcineurin. Ample evidence now indicates the G/S transition, the progression from G2 to M, and the metaphase/anaphase transition as specific points of intervention of CaM-kinase II. Another attractive possibility for the role of Ca2+ in the cycle is through the activation of the Ca(2+)-dependent protease calpain: other proteases (e.g., the proteasome) have been suggested to be responsible for the degradation of some of cyclins, which is essential to the progression of the cycle. One of the cyclins, however, (D1) is instead degraded by calpain, which has been shown to promote both mitosis and meiosis when injected into somatic cells or oocytes.

PubMed Disclaimer

LinkOut - more resources