Cell-mediated biotransformation of S-nitrosoglutathione
- PMID: 9515576
- DOI: 10.1016/s0006-2952(97)00498-x
Cell-mediated biotransformation of S-nitrosoglutathione
Abstract
Spontaneous release of nitric oxide (NO) from S-nitrosothiols cannot explain their bioactivity, suggesting a role for cellular metabolism or receptors. Using immortalised cells and human platelets, we have identified a cell-mediated mechanism for the biotransformation of the physiological S-nitrosothiol compound S-nitrosoglutathione (GSNO) into nitrite. We suggest the name "GSNO lyase" for this activity. GSNO lyase activity varied between cell types, being highest in a fibroblast cell line and lowest in platelets. In NRK 49F fibroblasts, GSNO lyase mediated a saturable, GSNO concentration-dependent accumulation of nitrite in conditioned medium, which was inhibited both by transition metal chelators, and by subjecting cells to oxidative stress using a combination of the thiol oxidant diamide and Zn2+, a glutathione reductase inhibitor. Activity was resistant, however, to both acivicin, an inhibitor of gamma-glutamyl transpeptidase (EC 2.3.2.2), and to ethacrynic acid, an inhibitor of Pi class glutathione-S-transferases (EC 2.5.1.18), thus neither of these enzymes could account for NO release. Although GSNO lyase does not explain the platelet-selective pharmacological properties of GSNO, cellular biotransformation suggests therapeutic avenues for targeted delivery of NO to other tissues.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
