Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Feb;27(4):751-61.
doi: 10.1046/j.1365-2958.1998.00720.x.

Leucine alters the interaction of the leucine-responsive regulatory protein (Lrp) with the fim switch to stimulate site-specific recombination in Escherichia coli

Affiliations
Free article

Leucine alters the interaction of the leucine-responsive regulatory protein (Lrp) with the fim switch to stimulate site-specific recombination in Escherichia coli

P L Roesch et al. Mol Microbiol. 1998 Feb.
Free article

Abstract

The leucine-responsive regulatory protein (Lrp) is a global regulator that controls the expression of numerous operons in Escherichia coli. Lrp can act as a repressor or as an activator of transcription with its effects being potentiated, repressed or unaffected by the presence of exogenous leucine. The phase variation of type 1 fimbria in E. coli provides a unique system in which to investigate the effects of leucine on Lrp, as it is the only known example in which Lrp is a positive regulator and leucine potentiates this effect. Previous studies determined that Lrp binds with high affinity to two sites within the fim switch (fim sites 1 and 2), and binding to these sites stimulates recombination. Here, it is shown that, even though leucine stimulates the fim switch in vivo, it nevertheless causes a slight decrease in Lrp binding to the fim switch in vitro. These contradictory results are explicable by the finding that Lrp binding to a third region adjacent to fim sites 1 and 2 inhibits recombination. According to this model, leucine stimulates recombination by selectively disrupting Lrp binding to this newly characterized region, while having little or no effect on Lrp binding to fim sites 1 and 2.

PubMed Disclaimer

Publication types

LinkOut - more resources