Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar 15;58(6):1225-30.

Interleukin 12 gene therapy of MHC-negative murine melanoma metastases

Affiliations
  • PMID: 9515809

Interleukin 12 gene therapy of MHC-negative murine melanoma metastases

P Nanni et al. Cancer Res. .

Abstract

Immunological gene therapy of cancer relies heavily on the activation of T cells, but tumors with defects in MHC gene expression are not recognized by MHC-restricted T cells. To investigate the potential of cytokine genes for the therapy of MHC-negative tumors, we transduced B78H1, a class I-negative murine melanoma clone, with a polycistronic vector carrying murine interleukin (IL)-12 genes. The clones studied produced 400-25,000 pg/ml IL-12; their in vitro growth properties were similar to those of parental cells. A complete inhibition of growth was observed in vivo both after s.c. and i.v. administration of all IL-12 clones. IL-12-transduced cells were also used as a therapeutic vaccine in mice bearing micrometastases by nontransduced parental cells. A significant (80-90%) reduction in the number of lung nodules was obtained. Immunohistochemical analysis and studies in immunocompromised hosts showed that T cells and natural killer cells had a significant role in the elimination of IL-12-releasing cells. In situ hybridization with cytokine probes detected a strong increase in the proportion of leukocytes positive for IFN-gamma, tumor necrosis factor alpha, IL-1beta, and IFN-inducible protein 10 at the site of rejection of IL-12-engineered tumor cells. However, it was clear that the loss of in vivo growth was also due to T-cell- and natural killer cell-independent factors, possibly related to the antiangiogenic properties of IL-12. In conclusion, tumor therapy based on IL-12 gene transduction was effective on a MHC-negative metastatic tumor, suggesting a possible application to MHC-defective human neoplasms.

PubMed Disclaimer

Publication types

LinkOut - more resources