Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar 27;273(13):7709-16.
doi: 10.1074/jbc.273.13.7709.

Prolactin receptor regulates Stat5 tyrosine phosphorylation and nuclear translocation by two separate pathways

Affiliations
Free article

Prolactin receptor regulates Stat5 tyrosine phosphorylation and nuclear translocation by two separate pathways

S Ali et al. J Biol Chem. .
Free article

Abstract

The SH2 domain containing signal transducers and activators of transcription (Stat proteins) are effector molecules downstream of cytokine receptors. Ligand/receptor engagement triggers Stat proteins tyrosine phosphorylation, dimerization, and translocation to the nucleus where they regulate gene transcription. Stat5, originally identified as a mammary gland growth factor, is an essential mediator of prolactin (PRL)-induced milk protein gene activation. Prolactin receptor (PRLR) is a member of the cytokine/growth hormone/PRL receptor superfamily. The mechanism through which PRLR modulates Stat5 tyrosine phosphorylation, nuclear translocation, and DNA binding was analyzed in HC11 cells, a mammary epithelial cell line, and 293-LA cells, a human kidney cell line stably overexpressing Jak2 kinase. We have found that in HC11 cells, Stat5 is specifically activated by PRL treatment, demonstrating that Stat5 is a physiological substrate downstream of PRLR. Furthermore, using different forms natural forms of the PRLR as well as receptor tyrosine to phenylalanine mutant forms, we determined that tyrosine phosphorylation of Stat5 is independent of PRLR phosphotyrosines. We established, however, that the C-terminal tyrosine of the PRLR Nb2 form, Tyr382, plays an essential positive role in PRLR-dependent Stat5 nuclear translocation and subsequently DNA binding. All together, our data propose a new model for activation of Stat5 through the PRLR, suggesting that Stat5 tyrosine phosphorylation and nuclear translocation are two separately regulated events.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources