Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar 15;195(2):144-57.
doi: 10.1006/dbio.1997.8840.

BMP1-related metalloproteinases promote the development of ventral mesoderm in early Xenopus embryos

Affiliations
Free article

BMP1-related metalloproteinases promote the development of ventral mesoderm in early Xenopus embryos

S A Goodman et al. Dev Biol. .
Free article

Abstract

Bone morphogenetic protein 1 (BMP1) is a metalloproteinase closely related to Drosophila Tolloid (Tld). Tld regulates dorsoventral patterning in early Drosophila embryos by enhancing the activity of Dpp, a member of the TGF-beta family most closely related to BMP2 and BMP4. In Xenopus BMP4 appears to play an essential role in dorsoventral patterning, promoting the development of ventral fates during gastrula stages. To determine if BMP1 has a role in regulating the activity of BMP4, we have isolated cDNAs for Xenopus BMP1 and a novel closely related gene that we have called xolloid (xld). Whereas xbmp1 is uniformly expressed at all stages tested, the initial uniform expression of xld becomes localized to two posterior ectodermal patches flanking the neural plate and later to the inner ectoderm of the developing tailbud. xld is also expressed in dorsal regions of the brain during tailbud stages and is especially abundant in the ventricular layer of the dorsal hindbrain caudal to the otic vesicle. Overexpression of either gene inhibits the development of dorsoanterior structures in whole embryos and ventralizes activin-induced dorsal mesoderm in animal caps. Since ventralization of activin-induced animal caps can be blocked by coinjecting a dominant-inhibitory receptor for BMP2 and BMP4, we suggest a role for BMP1 and Xld in regulating the ventralizing activity of these molecules.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources