Drosophila telomere elongation
- PMID: 9524751
- DOI: 10.1002/9780470515433.ch5
Drosophila telomere elongation
Abstract
Drosophila melanogaster has an unusual telomere elongation mechanism. Instead of short repeats that are synthesized by telomerase, long retrotransposons, HeT-A and TART, transpose to the ends of chromosomes. This mechanism generates tandem arrays of these elements at the chromosome ends, in which all elements are oriented with their oligo(A) tails towards the centromere. Structural features of HeT-A and TART elements may provide clues as to their transposition mechanism. Drosophila telomere length polymorphism is mainly due to terminal retrotransposon arrays that differ between chromosome tips and that change with time. In addition, stable terminal chromosome deletions can be generated that do not contain terminal HeT-A and TART arrays, suggesting that, unlike the equivalent terminal repeats in yeast and humans, the presence and length of terminal arrays in Drosophila may not be critical for cell cycle progression.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Molecular Biology Databases