Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997:212:215-26; discussion 227-9.
doi: 10.1002/9780470515457.ch14.

HGF/SF in angiogenesis

Affiliations
Review

HGF/SF in angiogenesis

E M Rosen et al. Ciba Found Symp. 1997.

Abstract

Hepatocyte growth factor/scatter factor (HGF/SF) is a mesenchyme-derived cytokine that stimulates motility and invasiveness of epithelial and cancer cells. These responses are transduced through the c-met proto-oncogene product, a transmembrane tyrosine kinase that functions as the HGF/SF receptor. We have shown that HGF/SF is a potent angiogenic molecule and that its angiogenic activity is mediated primarily through direct actions on vascular endothelial cells. These include stimulation of cell migration, proliferation, protease production, invasion, and organization into capillary-like tubes. We further showed that HGF/SF is overexpressed in invasive human cancers, including breast cancer, relative to non-invasive cancers and benign conditions. In invasive breast cancers, the content of HGF/SF is strongly correlated with that of von Willebrand's factor, a marker of vascular endothelial cells. Furthermore, transfection of breast cancer and glioma cell lines with HGF/SF cDNA greatly enhanced the ability of these cells to grow as tumours in orthotopic sites in syngeneic or immunocompromized host animals. The increased growth rate of the HGF/SF-transfected cells was attributable, in part, to increased tumour angiogenesis. These findings suggest that HGF/SF may function as a tumour progression factor, in part by stimulating tumour cell invasiveness and in part by stimulating angiogenesis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources