Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Feb 2;1369(1):131-40.
doi: 10.1016/s0005-2736(97)00219-8.

Helicity, membrane incorporation, orientation and thermal stability of the large conductance mechanosensitive ion channel from E. coli

Collaborators, Affiliations
Free article

Helicity, membrane incorporation, orientation and thermal stability of the large conductance mechanosensitive ion channel from E. coli

I T Arkin et al. Biochim Biophys Acta. .
Free article

Abstract

In this report, we present structural studies on the large conductance mechanosensitive ion channel (MscL) from E. coli in detergent micelles and lipid vesicles. Both transmission Fourier transform infrared spectroscopy and circular dichroism (CD) spectra indicate that the protein is highly helical in detergents as well as liposomes. The secondary structure of the proteins was shown to be highly resistant towards denaturation (25-95 degrees C) based on an ellipticity thermal profile. Amide H+/D+ exchange was shown to be extensive (ca. 66%), implying that two thirds of the protein are water accessible. MscL, reconstituted in oriented lipid bilayers, was shown to possess a net bilayer orientation using dichroic ratios measured by attenuated total-reflection Fourier transform infrared spectroscopy. Here, we present and discuss this initial set of structural data on this new family of ion-channel proteins.

PubMed Disclaimer

Publication types

LinkOut - more resources