Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar 5;16(9):1131-9.
doi: 10.1038/sj.onc.1201625.

In vivo degradation of N-myc in neuroblastoma cells is mediated by the 26S proteasome

Affiliations

In vivo degradation of N-myc in neuroblastoma cells is mediated by the 26S proteasome

P Bonvini et al. Oncogene. .

Abstract

N-myc is a short-lived transcription factor, frequently amplified in human neuroblastomas. The ubiquitin-proteasome system is involved in the degradation of many short-lived cellular proteins and previous studies have shown that ubiquitin-dependent proteolysis is implicated in the turn-over of N-myc in vitro. However, calpain has also been implicated in N-myc degradation in vitro. Here we report that, in vivo, N-myc is a sensitive substrate for the 26S proteasome in N-myc amplified neuroblastoma cells. We observed that inhibition of the 26S proteasome with two inhibitors, ALLnL and lactacystin, led to an elevation of the N-myc protein steady-state and increased N-myc protein polyubiquitination, as revealed by ubiquitin Western blotting. Pulse-chase experiments have shown that the increased N-myc levels resulted from stabilization of the protein. In contrast treatment with several calpain and cathepsin inhibitors failed to block N-myc degradation in vivo. Furthermore, fluorescence microscopy of ALLnL-treated cells localized N-myc exclusively to the nuclear compartment, suggesting the absence of a requirement for transport to the cytoplasm prior to degradation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources